Calibration and validation of a pressure measurement platform designed to prevent pressure ulcers in patients in wheelchairs
DOI:
https://doi.org/10.28957/rcmfr.493Abstract
Introduction. Wheelchair users develop pressure ulcers due to prolonged pressure between areas of bony prominence and the seat. Centers of pressure sensing platforms have been designed to prevent these injuries, but their high cost limits their accessibility.
Objective. To calibrate and validate a prototype of a low-cost platform that records the distribution of the pressure center through a measurement protocol that analyzes the accuracy of the sensor through repeatability and measurement error.
Method. A platform of four 50kg load cells interconnected with each other was designed. Calibration and validation protocols were established using standard masses and validating repeatability and precision through error analysis. In addition, a protocol was designed to study variations in the center of pressure when the posture in the wheelchair is modified. Finally, a case study was conducted to support the validation and calibration of the sensor.
Results. The platform proved to be precise and reliable, as the data showed repeatable and accurate measurements, with errors less than 3.75%, demonstrating good repeatability. Furthermore, its ability to estímate variations in the center of pressure was validated.
Conclusions. Taking into account the recommendations of international organizations, the platform developed in this study constitutes a low-cost tool with associated hardware and software that can significantly contribute to the prevention of pressure ulcers.
References
Sociedad Iberolatinoamericana Úlceras y Heridas (SILAUHE). Declaración de Sao Paulo sobre la prevención de las lesiones cutáneas relacionadas con la dependencia como compromiso de países y organizaciones [Internet]. SILAUHE; 2022 [citado diciembre 22 de 2024]. Disponible en: https://silauhe.org/declaraciones-y-manifiestos-silauhe/.
Tardío-Cazorla E, Martínez-Pérez AM, Molina-Fajó I, Sánchez-Valdivia M, Sancho-Valentín I, Tarancón-Gabás P. Plan de cuidados de enfermería en paciente encamada con úlceras por presión. Revista Sanitaria de Investigación. 2024,5(6):57.
Kottner J, Cuddigan J, Carville K, Balzer K, Berlowitz D, Law S, et al. Prevention and treatment of pressure ulcers/injuries: The protocol for the second update of the international Clinical Practice Guideline 2019. J Tissue Viability. 2019;28(2):51-8. Disponible en: https://doi.org/10.1016/j.jtv.2019.01.001.
Plaza-Blázquez R, Guija-Rubio RM, Martínez-Ivars ML, Alarcón-Alarcón M, Calero-Martínez C, Piqueras-Díaz MJ, et al. Prevención y tratamiento de las Úlceras por Presión. Revista Clínica de Medicina de Familia. 2007;1(6):284-90.
National Clinical Guideline Centre (UK). The prevention and management of pressure ulcers in primary and secondary care. London: National Institute for Health and Care Excellence (NICE); 2014.
Bouten CV, Oomens CW, Baaijens FP, Bader DL. The etiology of pressure ulcers: skin deep or muscle bound? Arch Phys Med Rehabil. 2003;84(4):616-9. Disponible en: https://doi.org/10.1053/apmr.2003.50038.
Patiño OJ, Aguilar HA, Belatti A. Úlceras por presión: cómo prevenirlas. Actualización y Rev. Hosp. Ital. B. Aires. 2018;38(1):40-6.
Gonzalez A, Das A, Kumar D, Dutta A, Lahiri U, Fraisse P, et al. Uso del Centro de Masa Personalizado para la Evaluación del Equilibrio. Memorias del Congreso Nacional de Ingeniería Biomédica. 2017;4(1):273-6. Disponible en: https://doi.org/10.24254/CNIB.17.52.
Mendoza-Hurtado HA. Guía de laboratorio sobre biomecánica de la caminata humana [tesis] [Internet]. Bogotá D.C.: Universidad Distrital Francisco José de Caldas; 2018 [citado abril 30 de 2025]. Disponible en: http://hdl.handle.net/11349/23638.
Winter DA., Biomechanics and Motor Control of Human Movement. 4th ed. Ontario: John Wiley & Sons; 2009.
Montoro-Cárdenas D, Cortés-Pérez I, Zagalaz-Anula N, Osuna-Pérez MC, Obrero-Gaitán E, Lomas-Vega R. Nintendo Wii Balance Board therapy for postural control in children with cerebral palsy: a systematic review and meta-analysis. Dev Med Child Neurol. 2021;63(11):1262-75. disponible en: https://doi.org/10.1111/dmcn.14947.
Reinhardt L, Heilmann F, Teicher M, Lauenroth A, Delank KS, Schwesig R, et al. Comparison of posturographic outcomes between two different devices. J Biomech. 2019,86:218-24. Disponible en: https://doi.org/10.1016/j.jbiomech.2019.02.013.
Clark RA, Mentiplay BF, Pua YH, Bower KJ. Reliability and validity of the Wii Balance Board for assessment of standing balance: A systematic review. Gait posture. 2017;61:40-54. Disponible en: https://doi.org/10.1016/j.gaitpost.2017.12.022.
Jamshidi N, Rostami M, Najarian S, Menhaj MB, Saadatnia M, Salami F. Differences in center of pressure trajectory between normal and steppage gait. J Res Med Sci. 2010;15(1):33-40.
Schmiedmayer HB, Kastner J. Enhancements in the Accuracy of the Center of Pressure (CoP) Determined With Piezoelectric Force Plates Are Dependent on the Load Distribution. J Biomech Eng. 2000;122(5): 523-7. Disponible en: https://doi.org/10.1115/1.1289687.
Sheehy L, Taillon-Hobson A, Finestone H, Bilodeau M, Yang C, Hafizi D, et al. Centre of pressure displacements produced in sitting during virtual reality training in younger and older adults and patients who have had a stroke. Disabil Rehabil Assist Technol. 2020;15(8):924-32. Disponible en: https://doi.org/10.1080/17483107.2019.1629118.
Curry C, Peterson N, Li R, Stoffregen TA. Postural precursors of motion sickness in head-mounted displays: drivers and passengers, women and men. Ergonomics. 2020;63(12):1502-11. Disponible en: https://doi.org/10.1080/00140139.2020.1808713.
Mervis JS, Phillips TJ. Pressure ulcers: Prevention and management. J Am Acad Dermatol. 2019;81(4):893-902. Disponible en: https://doi.org/10.1016/j.jaad.2018.12.068h.
Peña Morales, J. S. Análisis de actividad y estudio de monitoreo continuo de pacientes en cuidados paliativos oncológicos domiciliarios mediante sensores no invasivos. 2023.
Ma C, Li W, Gravina R, Fortino G. Posture detection based on smart cushion for wheelchair users. Sensors (Basel). 2017;17(4):719. Disponible en: https://doi.org/10.3390/s17040719.
Zemp R, Tanadini M, Plüss S, Schnüriger K, Singh NB, Taylor WR, et al. Application of Machine Learning Approaches for Classifying Sitting Posture Based on Force and Acceleration Sensors. Biomed Res Int. 2016;2016:5978489. Disponible en: https://doi.org/10.1155/2016/5978489.
Tsai MC, Chu ET, Lee CR. An automated sitting posture recognition system utilizing pressure sensors. Sensors (Basel). 2023;23(13):5894. Disponible en: https://doi.org/10.3390/s23135894.
Gupta R, Gupta SH, Agarwal A, Choudhary N, Bansal N, Sen S. A Wearable Multisensor Posture Detection System. Madurai: 2020 4th International Conference on Intelligent Computing and Control Systems (ICICCS); 2020. Disponible en: https://doi.org/10.1109/iciccs48265.2020.9121.
24. Dicianno BE, Arva J, Lieberman JM, Schmeler MR, Souza A, Phillips K, et al. RESNA position on the application of tilt, recline, and elevating legrests for wheelchairs. Assist Technol. 2009;21(1):13-22. Disponible en: https://doi.org/10.1080/10400430902945769.
25. Ding D, Leister E, Cooper RA, Cooper R, Kelleher A, Fitzgerald SG, et al. Usage of tilt-in-space, recline, and elevation seating functions in natural environment of wheelchair users. J Rehabil Res Dev. 2008;45(7):973-83. Disponible en: https://doi.org/10.1682/JRRD.2007.11.0178.
26. Yang TD, Hutchinson SA, Rice LA, Watkin KL, Jan YK. Development of a scalable monitoring system for wheelchair tilt-in-space usage. Int J Phys Med Rehabil. 2013;1(4)129. Disponible en: https://doi.org/10.4172/2329-9096.1000129.
27. Camargo-Buitrago I, Gordon-Mendoza R, Quirós-McIntire EI. La repetitividad como estimador de la precisión experimental en el análisis de experimentos. Agron Mesoam. 2017;28(1):159-69. Disponible en: http://dx.doi.org/10.15517/am.v28i1.24239.
28. Argentina. Instituto Nacional de Tecnología Industrial (INTI). Servicio Argentino de Calibración y Medición [Internet]. Buenos Aires: INTI; [citado octubre 16 de 2025]. Disponible en: https://www.inti.gob.ar/areas/metrologia-y-calidad/servicio-argentino-de-calibracion/servicio-argentino-de-calibracion.
29. Tienda it&t S.A. Argentina. [Internet]. Fecha de acceso: 15 de enero de 2025. Disponible en: https://tienda.ityt.com.ar/sensor-celda-de-carga/4150-sensor-peso-celda-de-carga-50kg-strain-gauge-itytarg.html.
30. Havran V. Determining the weight of oil extracted with a screw press using a strain gauge sensor, HX711 module, and Arduino. Herald of Khmelnytskyi National University. Technical Sciences. 2024, 331(1):73-76. Disponible en: http://dx.doi.org/10.31891/2307-5732-2024-331-12.
31. Mukhammad Y, Santika A, Haryuni S. Analisis Akurasi Modul Amplifier HX711 untuk Timbangan Bayi. Medika Teknika: Jurnal Teknik Elektromedik Indonesia. 2022;4(1):24-8. Disponible en: https://doi.org/10.18196/mt.v4i1.15148.
32. Argentina. Congreso de la Nación. Ley 25.326 de 2000 (octubre 4): Ley de Protección de datos Personales [Internet]. Buenos aires; noviembre 2 de 2000 [citado octubre 20 de 2025]. Disponible en: https://www.argentina.gob.ar/normativa/nacional/ley-25326-64790.
33. Argentina. Ministerio de Salud. Resolución 1480 de 2011 (septiembre 13): Guía para investigaciones con seres humanos [Internet]. Buenos Aires; septiembre 21 de 2011 [citado octubre 20 de 2025]. Disponible en: https://www.argentina.gob.ar/normativa/nacional/resoluci%C3%B3n-1480-2011-187206.
34. World Medical Association (WMA). WMA Declaration of Helsinki – Ethical principles for medical research involving human participants [Internet]. Helsinki: 75th WMA General Assembly; 2024 [citado octubre 20 de 2025]. Disponible en: https://www.wma.net/es/policies-post/declaracion-de-helsin-ki-de-la-amm-principios-eticos-para-las-investigaciones-medicas-en-seres-humanos/.
How to Cite
Downloads
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Revista Colombiana de Medicina Física y Rehabilitación

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
